MATHS5635 Stochastic Calculus for Finance I Autumn 2025

Chapter 6: Stochastic Differential Equations

Lecturer: Kenneth Ng

Preview

This chapter introduces the theory and techniques in solving linear stochastic differential
equations (SDEs). We will also cover methods to simulate the solutions of SDEs.

Key topics in this chapter:
1. General theory of SDEs;

2. Arithmetic and geometric SDEs;
3. Simulations of SDEs.

1 Theory of Stochastic Differential Equations

A process X satisfies a stochastic integral equation if it admits the following representa-
tion:

t t
Xi=¢ +/ b(s, Xs)ds +/ o(s,Xs)dB,, 0 <t <T,
0 0

where T > 0, £ is a random variable, and b, 0 : [0, 00) x R — R. We can also write the above
in differential form:

dXt = b(t,Xt> dt + O'(t,Xt) dBt, XO = f, 0 S t S T. (1)

We call a stochastic differential equation (SDFE). Given a filtered probability space
(Q, F, {Fi}i>0,P), we want to find a process X that satisfies the SDE (I)). Such a process is
called a (strong) solution of the SDE ().

Before attempting to solve a SDE, a natural question is whether a solution exists, and if
so, whether it is unique. The existence and uniqueness of a solution depend on the regularity
of the coefficients b and o. Even in the simpler case of ordinary differential equations (ODEs),
where o = 0, uniqueness may fail if b lacks sufficient regularity.

Example 1.1 Let a > 0. Consider the ODE

dX
d_tt — ‘Xt‘a, XO = O

The equation has a unique solution for o« > 1, which is given by X; = 0 for ¢t > 0. If
a € (0,1), the equation has infinitely many solution. Indeed, for any arbitrary s > 0,

the function
0, if0<t<s;

A= <t_8>ﬂ if ¢ >
— y 1 = S,
p

where 3 := (1 — a)™!, is a solution of the given ODE.

To ensure the existence and uniqueness of a solution to an SDE, we introduce the following
regularity conditions:

Definition 1.1 A function f(¢,x) is said satisfy the
1. global Lipschitz condition if there exists K > 0 such that, for any z,y € R and
t>0,

2. linear growth condition if there exists L > 0 such that, for any ¢ > 0 and = € R,

|f(t,2)| < L(1 + |z]).

Remark 1.1. If there exists C' > 0 such that | f(¢,0)] < C for all t > 0, then f being globally
Lipschitz implies that f is of linear growth. To see this, for any ¢t > 0 and x € R,

[f(t)] < [f(E2) = f(80) + [f(E0)] < Kz + [f(#,0)| < C+ Klz| < L(1 + |z]),

where L := max{C, K'}.

We now introduce the general theory of SDEs, whose proof is out of the scope of our
course:

Theorem 1.2 Suppose that the coefficients b and o satisfy the global Lipschitz and
linear growth conditions, and E[|£|*] < co. Then, the SDE ([1]) admits a unique solution,

which satisfies .
E U |Xt|2dt} < .
0

2 Arithmetic SDEs
An arithmetic SDE takes the form
dX; = (a+bXy)dt +0dB;, 0 <t <T, (2)
where a,b,0 € R. The OU process
dX; =0(p— Xy)dt + 0dB;, Xo=r,

is an example of an arithmetic SDE with a = fu and b = —6.

The SDE can be solved using the method of integrating factor. Consider the
process Y; := e " X,. By Itd’s lemma,

dY, = —=bY,dt + e " dX,
= (—bYt +ae b + bYt) dt + e dB,
=ae " dt + oe " dB,.

Integrating both sides yields
t t
e X, —Xo=Y, - Y, = / ae % ds +/ oe % dB,
0 0

Rearranging the above yields

t
Xy + Lt — 1)+ a/ = dB,, if b+ 0;
X, = b 0

Xo+at +oBy, if b=0.

(3)

From , we see that X can take both positive and negative values. When b = 0, X
follows an arithmetic Brownian motion, or a Brownain motion with drift parameter a.

Suppose that X is deterministic, we can compute the mean and variance of X;:

e’ Xy + %(ebt —1), ifb#0;
X(] + at, lf b:O,

E[X:] =

2
t t O (ot - .

Var[X;] = Var [0/ eb(t=s) dBS] = 02/ e20=3) gg = { 2p (e 1) 070
0 0 ot if b=0,

where we have use Itd’s isometry when computing the variance. By Proposition 3.3 in
Chapter 5, we have

2 (
N (X + at,0%t), if b=0,

2
N <6th0 + E(ebt - 1), T (et 1)) , if b #£0;
Xt ~/ b

Example 2.1 Let X be an OU process which satisfies
dX; =0(p— X)) dt + 0dBy;, Xo=r,

where # > 0. Find an explicit expression for X and deduce its distribution.

Solution. Using the method of integrating factor with b = —6 and a = u#, we have
t
Xe=er+pl—e) + 0/ e~ %= dB,,
0

and

2
Xi~ N (e_atr + (1 — ™), g—e(l — e‘zet)) :

When a, b, o are time-dependent deterministic functions, i.e., X follows
dX; = (a; + b Xy) dt + o4 dBy,
we can solve the equation by considering
Y, = e oo,

Following the above calculations, we can deduce that

t t
thefobSdng—i—/ asefsbudud8+/ O'SGISbudust.
0 0

3 Geometric SDEs

A geometric SDE takes the form
dXy = pXydt + 0 X dB;, 0<t<T, (5)

where p, 0 € R. Compared with arithmetic SDE , the diffusion term in (5)) also depends
linearly in X.

To solve the SDE , we consider the process
}/;5 = ln Xt'

4

Applying It6’s lemma to Y, we have

1 1
Y, = —dX, — —d(X
=, e 2Xt2d<)i
1 1
= Z (,UXt dt + O'Xt dBt) - Q_AX'E(O_Xt)Q dt
0.2

Integrating both sides yields

2

X, —InX,=Y, - Y, = (u—%)t+aBt.

Rearranging the above yields

X, = Xoexp ((u - ?) t+ oBt> . (6)

The solution X of the SDE (j5) is also called a geometric Brownian motion (GBM).
From @, we see that X; > 0 as long as Xy > 0. This makes GBM an ideal model for a
stock price process. In finance, the process S that satisfies

dSt = ,MSt dt ‘I— O'St dBt,

o > 0, is called the Black-Scholes model with rate of return p and volatility o. If X is
deterministic and Xy > 0, X; follows a log-normal distribution:

2
X, ~ lognormal (ln Xo + (;z — %) t, UQt) .

When p and o are time-dependent, i.e., X follows
dXt = ,utXt dt + O'tXt dBt,

the solution of the SDE can be obtained similarly by considering Y; = In X;, which is given

b
Y t o2 t
Xt:XOeXp(/ <us—73) d8—|—/ (78st>.
0 0

Example 3.1 Let S be the stock price process which follows the Black-Scholes model
with the rate of return p, volatility o, and Sy = 1. For any p > 0, compute E[S}].

St:exp(<,u— >t+0Bt>,
SP = exp (p<,u— >t+paBt).

Hence, if we let Z ~ N(0,1), we have
E[s?] = (=7) E[ero

2

p(#‘%)tE[epcr\/ZZ]

Solution. It is known that

| 9,

so that

| 9,

=€
_ﬁ) p20'2t
= ep(ﬂ 2 te 2

_ eputtzp(p—1)o’t

4 Simulations of SDEs

In this section, we introduce fundamental techniques for simulating solutions of stochas-
tic differential equations (SDEs) using random number generators and built-in functions.
MATLAB will be used for illustration purposes.

4.1 Brownian Motions

We divide the time horizon [0, T] into N subintervals, with time points {tg = 0, t1,ts,...,txy =
T}, where t; = iAt and At = L. To simulate the values of a Brownian motion at these
discrete times, we make use of the fact that Brownian motion has independent and Gaus-
sian increments. Specifically, we generate N independent standard normal random variables
Zyy..., Zn ~N(0,1), and define the Brownian path recursively by:

Bto = O,
Bt IIBti+VAtZi+1, forz'zl,...,N—l.

i+1

This yields a discrete-time approximation of the Brownian motion over the interval

0, T7.

=

s B = zeros (1, N+1);

% Parameters

T=1; % Time horizon

N = 1000; % Number of time steps
dt = T/N; % Time step size

t = linspace (0, T, N+1);

% Brownian motion
% Set seed to ensure reproducible output
% Increments ~ N(0, dt)

rng (1) ;
dB = sqrt(dt)*randn(1l, N);

% Simulate BM

for 1 = 2:N+1
B(i) = B(i—1) + dB(i—1);
end
5 % Plot

> plot (t, B);

xlabel ("Time’); ylabel(’B _t’);
title (’Brownian Motion) ;

Listing 1: Brownian Motion Simulation

Brownian Motion
0.4 . :

02} HWI h
| ‘L'rj 1

(=]
—
——
—

B,

-0.2¢

-04 ¢

-0.6

0.4 0.6 0.8 1
Time

Figure 1: A simulated path of the standard Brownian motion

4.2 Arithmetic SDEs
Recall that the solution of the arithmetic SDE is given, for b # 0, by

t
X, =" X, + % (ebt — 1) + U/ e’t=%) 4B,.
0

When b = 0, the process reduces to an arithmetic Brownian motion, which can be simulated
in the same manner as a Brownian motion with drift. In this subsection, we simulate X; for
the case b # 0 using its explicit solution, where the stochastic integral is approximated by

7

V]

N

NN NN NN
R W N R O

N

NN N
© o

w

a sum of Brownian increments. Below presents the code for simulating the solution of an
arithmetic SDE with initial condition Xy = 0.02, a = 0.04, b = —0.5, and ¢ = 0.1.

% Parameters

a = 0.04;
5 b = —0.5;
sigma = 0.1;
5 X0 = 0.02;
r T = 1;
s N = 1000;
o dt = T/N;
t = linspace (0, T, N+1);

% Preallocate
3 X = zeros (1, N+1);
X(1) = Xo0;

) l/L Brownian increments

7 dB = sqrt(dt) * randn(1l, N);

9 % Explicit solution path
for i = 2:N+1

% Stochastic integral approximation:

stoch int = sum(exp(b % (t(i) — t(1l:1—1))) .x dB(1l:i—1));

X(i) = exp(bxt(i)) * X0 + (a/b) * (exp(bxt(i)) — 1) + sigma * stoch int;
end

s % Plot

plot (t, X);

xlabel ("Time’) ;
ylabel ("X t7);

title (’Arithmetic SDE’);

Listing 2: Arithmetic SDE Simulation with Explicit Solution

Alternatively, when the initial value X, is deterministic, we can simulate the process
(X¢)t>0 by exploiting its Gaussian distribution; see (4)). In particular, for any 0 < ¢; <
ti+1 < T, conditioning on X;,, we have

a tit1
Xiy =X+ (9 = 1) 40 / T 4B,
t

b

i+1

T
In particular, we have

2
X | Xpy ~ NV (ebAtXti + % (ebAt _ 1) ’ % (e2bAt - 1)) ‘

Therefore, given X, we can simulate X, , by drawing a standard normal random variable

i+1

Z; ~ N(0,1) and updating via

2
_ oy, 4O (P — 1) + T (et 1) 7,

X
! b 2b

141

The following MATLAB code illustrates this simulation approach.

(/Q Parameters

1

2 a — 0.04;

;b = —0.5;

4+ sigma = 0.1;

5 X0 = 0.02;

6

T = 1;

s N = 1000;

odt =T / N;
10 t = linspace (0, T, N+1);

12 % Preallocate
13 X = zeros (1, N+1);
11 X(1) = Xo0;

s % Simulate X t iteratively using conditional distribution
17 for 1 = 2:N+41

=

18 exp_ bt = exp(b * dt);

19

20 % Conditional mean

21 mu_cond = exp bt % X(i—1) + (a / b) * (exp_ bt — 1);
22

23 % Conditional variance of stochastic integral

24 var_cond = (sigma~2 / (2 * b)) * (exp(2 * b * delta_t) — 1);
25

26 % Sample X(i) =~ Normal(mu cond, var cond)

27 X(i) = mu cond + sqrt(var cond) * randn();

28 end

30 % Plot result

s1 plot (t, X;

s2 xlabel (’Time’) ;

33 ylabel (’X _t7);

s title (’Simulation of Arithmetic SDE using conditional Gaussian increments’);

Listing 3: Simulation of Arithmetic SDE using conditional Gaussian increments

4.3 Geometric Brownian Motions

A GBM is the solution of the SDE (j5)), which takes the explicit form

o2
X; = Xpexp ((u— ?)t—l—aBt))

The most straightforward way to simulate a GBM is to first simulate a standard Brownian
motion By, followed by computing X; using the above formula. Below presents the code
for simulating a GBM with initial condition Xy = 1, rate of return ¢ = 0.1 and volatility
o=0.2.

% Parameters

1

cmu = 0.1;

3 sigma = 0.2;

1 X0 = 1;

6 T = 1;

7N = 1000;

s dt = T/N;

9 t = linspace (0, T, N+1);
10 B = zeros (1, N+1);
11 X = zeros (1, N+1);
12 X(1) = X0;

13 dB = sqrt (dt)*randn (1, N);

15 % Simulate BM
16 for 1 = 2:N+1
. B(i) = B(i—1) + dB(i—1);

18 end

20 % Explicit solution
21 X = X0 * exp((mu — 0.5 % sigma”~2) % t + sigma x B);

23 % Plot

212 plot (t, X);

xlabel (’Time’); ylabel (’X t7);

i title (’Geometric Brownian Motion’);

Listing 4: Geometric SDE (Black-Scholes) Simulation

ot

NN
5 ¢

Alternatively, MATLAB has a built-in function gbm to directly simulate a geometric Brow-
nian motion.

% Parameters

1

cmu = 0.1; % rate of return

3 sigma = 0.2; % volatility

4+ X0 = 1; % initial condition

s T = 1; % Time horizon

7N = 1000; % Number of steps

s dt = T/N; % Time step

o nPaths = 1; % Number of simulated paths

10

11 % Create GBM model

12 bm_model = gbm(0, 1, ’StartState’, XO0);
13

14 % Simulate paths

10

15

16

1
2
3
4

10
11

12
13
14
15
16
17
18
19

20

[paths, time| = simulate (bm_ model, N, ’DeltaTime’, dt, 'nTrials’, nPaths);

% Extract BM (GBM returns levels; here they are just Brownian paths)
B = paths;

% Plot

plot (time, B);
xlabel ("Time’) ;

ylabel ("B_t’);

title (’Geometric Brownian Motion’);

Listing 5: Simulating a standard Brownian motion using the gbm object

4.4 FEuler-Maruyama Method

Given a generic SDE with no closed-form solution, we can simulate the solution using
the Fuler-Maruyama method. Given the initial condition Xy = ¢ and the grid points
{0 =to,ty,...,txy =T} with t;, = iAt and At =T /N, we generate N independent standard
normal variables Zi, ..., Zy ~ N(0,1), and define {X;,}¥, recursively by:
Xto = g,
Xti+1 = Xti + b(tz, Xm)At + O'(ti, th) V AtZH_l, for ¢ = 0, ceey N —1.

The following code illustrates the simulation of the solution of the equation

dXt = (COSt + O].Xt) dt + 02(1 + Xt) d_Bt7 XO = 0

% Euler—Maruyama method for SDE: dX b(t,X) dt + sigma(t,X) dW
% Inputs:
b =@(t,x) cos(t) + 0.1xx % function handle for drift, b(t,x)

sigma = @Q(t,x) 0.2%x(1+x); % function handle for diffusion , sigma(t,x)
X0 = 0; % initial condition

T = 1; % final time

N = 1000 % number of time steps

M= 1; % number of sample paths

dt =T / N; % step size

t = linspace (0, T, N+1);

X = zeros (M, N+1);

X(:,1) = X0;

for i = 1:N

dB = sqrt(dt) * randn(M, 1); % Brownian increments

X(:,i+1) =X(:,1) + b(t(i), X(:,i)) * dt + sigma(t(i), X(:,i)) .*x dB;
end
plot (t, X(1,:)) % plot Path 1 of the SDE

11

21 xlabel (’Time’) ;
2> ylable (’B_t’);
23 title (’Euler—Maruyama’) ;

Alternatively, MATLAB offers a built-in function sde in the Financial Toolbox to simulate
the solution of a SDE given the coefficients b, o.

% Simulation of SDE using MATLAB’s built—in sde function
% Requires Financial Toolbox

% Drift and diffusion functions
5 b =@Q(t,x) cos(t) + 0.1xx;
¢ sigma = @Q(t,x) 0.2x(1 + x);

¢ % SDE object definition

o SDEobj = sde(b, sigma, ’StartState’, 0);
10

11 % Simulation parameters

12 T = 1; % Final time

13 N = 1000; % Number of time steps
M= 1; % Number of sample paths
15 dt =T / Nj % Step size

16
17 % Simulate paths
15 [Paths, Time] = simulate (SDEobj, N, ’DeltaTime’, dt, 'nTrials’, M);

20 % Plot the first path

21 plot (Time, Paths);

22 xlabel (’Time’) ;

23 ylabel (X _t7);

24 title (’SDE Simulation using sde function’);

The Euler-Maruyama method is the default simulation method of the sde object. One
can also choose alternative simulation methods by specifying in the Method argument in
the function simulate; seehttps://www.mathworks.com /help /finance /sde.simulate.html| for

details.

12

	Theory of Stochastic Differential Equations
	Arithmetic SDEs
	Geometric SDEs
	Simulations of SDEs
	Brownian Motions
	Arithmetic SDEs
	Geometric Brownian Motions
	Euler-Maruyama Method

