
MATH5635 Stochastic Calculus for Finance I Autumn 2025

Chapter 6: Stochastic Differential Equations

Lecturer: Kenneth Ng

Preview
This chapter introduces the theory and techniques in solving linear stochastic differential
equations (SDEs). We will also cover methods to simulate the solutions of SDEs.

Key topics in this chapter:
1. General theory of SDEs;

2. Arithmetic and geometric SDEs;

3. Simulations of SDEs.

1 Theory of Stochastic Differential Equations
A process X satisfies a stochastic integral equation if it admits the following representa-
tion:

Xt = ξ +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs, 0 ≤ t ≤ T,

where T > 0, ξ is a random variable, and b, σ : [0,∞)×R → R. We can also write the above
in differential form:

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = ξ, 0 ≤ t ≤ T. (1)

We call (1) a stochastic differential equation (SDE). Given a filtered probability space
(Ω,F , {Ft}t≥0,P), we want to find a process X that satisfies the SDE (1). Such a process is
called a (strong) solution of the SDE (1).

Before attempting to solve a SDE, a natural question is whether a solution exists, and if
so, whether it is unique. The existence and uniqueness of a solution depend on the regularity
of the coefficients b and σ. Even in the simpler case of ordinary differential equations (ODEs),
where σ = 0, uniqueness may fail if b lacks sufficient regularity.

1

Example 1.1 Let α > 0. Consider the ODE

dXt

dt
= |Xt|α, X0 = 0.

The equation has a unique solution for α ≥ 1, which is given by Xt = 0 for t ≥ 0. If
α ∈ (0, 1), the equation has infinitely many solution. Indeed, for any arbitrary s ≥ 0,
the function

Xt =


0, if 0 ≤ t ≤ s;(
t− s

β

)β

, if t ≥ s,

where β := (1− α)−1, is a solution of the given ODE.

To ensure the existence and uniqueness of a solution to an SDE, we introduce the following
regularity conditions:

Definition 1.1 A function f(t, x) is said satisfy the
1. global Lipschitz condition if there exists K > 0 such that, for any x, y ∈ R and

t ≥ 0,
|f(t, x)− f(t, y)| ≤ K|x− y|;

2. linear growth condition if there exists L > 0 such that, for any t ≥ 0 and x ∈ R,

|f(t, x)| ≤ L(1 + |x|).

Remark 1.1. If there exists C > 0 such that |f(t, 0)| ≤ C for all t ≥ 0, then f being globally
Lipschitz implies that f is of linear growth. To see this, for any t ≥ 0 and x ∈ R,

|f(t, x)| ≤ |f(t, x)− f(t, 0)|+ |f(t, 0)| ≤ K|x|+ |f(t, 0)| ≤ C +K|x| ≤ L(1 + |x|),

where L := max{C,K}.

We now introduce the general theory of SDEs, whose proof is out of the scope of our
course:

Theorem 1.2 Suppose that the coefficients b and σ satisfy the global Lipschitz and
linear growth conditions, and E[|ξ|2] < ∞. Then, the SDE (1) admits a unique solution,
which satisfies

E
[∫ T

0

|Xt|2 dt
]
< ∞.

2

2 Arithmetic SDEs
An arithmetic SDE takes the form

dXt = (a+ bXt) dt+ σdBt, 0 ≤ t ≤ T, (2)

where a, b, σ ∈ R. The OU process

dXt = θ(µ−Xt) dt+ σ dBt, X0 = r,

is an example of an arithmetic SDE with a = θµ and b = −θ.

The SDE (2) can be solved using the method of integrating factor. Consider the
process Yt := e−btXt. By Itô’s lemma,

dYt = −bYt dt+ e−bt dXt

=
(
−bYt + ae−bt + bYt

)
dt+ σe−bt dBt

= ae−bt dt+ σe−bt dBt.

Integrating both sides yields

e−btXt −X0 = Yt − Y0 =

∫ t

0

ae−bs ds+

∫ t

0

σe−bs dBs

Rearranging the above yields

Xt =

ebtX0 +
a

b
(ebt − 1) + σ

∫ t

0

eb(t−s) dBs, if b ̸= 0;

X0 + at+ σBt, if b = 0.

(3)

From (3), we see that X can take both positive and negative values. When b = 0, X
follows an arithmetic Brownian motion, or a Brownain motion with drift parameter a.

Suppose that X0 is deterministic, we can compute the mean and variance of Xt:

E[Xt] =

ebtX0 +
a

b
(ebt − 1), if b ̸= 0;

X0 + at, if b=0,

Var[Xt] = Var
[
σ

∫ t

0

eb(t−s) dBs

]
= σ2

∫ t

0

e2b(t−s) ds =


σ2

2b

(
e2bt − 1

)
, if b ̸= 0;

σ2t, if b = 0,

where we have use Itô’s isometry when computing the variance. By Proposition 3.3 in
Chapter 5, we have

3

Xt ∼

N
(
ebtX0 +

a

b
(ebt − 1),

σ2

2b

(
e2bt − 1

))
, if b ̸= 0;

N
(
X0 + at, σ2t

)
, if b = 0,

(4)

Example 2.1 Let X be an OU process which satisfies

dXt = θ(µ−Xt) dt+ σ dBt, X0 = r,

where θ > 0. Find an explicit expression for X and deduce its distribution.

Solution. Using the method of integrating factor with b = −θ and a = µθ, we have

Xt = e−θtr + µ(1− e−θt) + σ

∫ t

0

e−θ(t−s) dBs,

and
Xt ∼ N

(
e−θtr + µ(1− e−θt),

σ2

2θ
(1− e−2θt)

)
.

When a, b, σ are time-dependent deterministic functions, i.e., X follows

dXt = (at + btXt) dt+ σt dBt,

we can solve the equation by considering

Yt := e−
∫ t
0 bs dsXt.

Following the above calculations, we can deduce that

Xt = e
∫ t
0 bs dsX0 +

∫ t

0

ase
∫ t
s bu du ds+

∫ t

0

σse
∫ t
s bu du dBs.

3 Geometric SDEs
A geometric SDE takes the form

dXt = µXt dt+ σXt dBt, 0 ≤ t ≤ T, (5)

where µ, σ ∈ R. Compared with arithmetic SDE (2), the diffusion term in (5) also depends
linearly in X.

To solve the SDE (5), we consider the process

Yt := lnXt.

4

Applying Itô’s lemma to Y , we have

dYt =
1

Xt

dXt −
1

2X2
t

d⟨X⟩t

=
1

Xt

(µXt dt+ σXt dBt)−
1

2X2
t

(σXt)
2 dt

=

(
µ− σ2

2

)
dt+ σ dBt.

Integrating both sides yields

lnXt − lnX0 = Yt − Y0 =

(
µ− σ2

2

)
t+ σBt.

Rearranging the above yields

Xt = X0 exp

((
µ− σ2

2

)
t+ σBt

)
. (6)

The solution X of the SDE (5) is also called a geometric Brownian motion (GBM).
From (6), we see that Xt > 0 as long as X0 > 0. This makes GBM an ideal model for a
stock price process. In finance, the process S that satisfies

dSt = µSt dt+ σSt dBt,

σ > 0, is called the Black-Scholes model with rate of return µ and volatility σ. If X0 is
deterministic and X0 > 0, Xt follows a log-normal distribution:

Xt ∼ lognormal
(
lnX0 +

(
µ− σ2

2

)
t, σ2t

)
.

When µ and σ are time-dependent, i.e., X follows

dXt = µtXt dt+ σtXt dBt,

the solution of the SDE can be obtained similarly by considering Yt = lnXt, which is given
by

Xt = X0 exp

(∫ t

0

(
µs −

σ2
s

2

)
ds+

∫ t

0

σs dBs

)
.

5

Example 3.1 Let S be the stock price process which follows the Black-Scholes model
with the rate of return µ, volatility σ, and S0 = 1. For any p > 0, compute E[Sp

t].

Solution. It is known that

St = exp

((
µ− σ2

2

)
t+ σBt

)
,

so that
Sp
t = exp

(
p

(
µ− σ2

2

)
t+ pσBt

)
.

Hence, if we let Z ∼ N (0, 1), we have

E[Sp
t] = e

p
(
µ−σ2

2

)
tE[epσBt]

= e
p
(
µ−σ2

2

)
tE[epσ

√
tZ]

= e
p
(
µ−σ2

2

)
t
e

p2σ2t
2

= epµt+
1
2
p(p−1)σ2t.

4 Simulations of SDEs
In this section, we introduce fundamental techniques for simulating solutions of stochas-
tic differential equations (SDEs) using random number generators and built-in functions.
MATLAB will be used for illustration purposes.

4.1 Brownian Motions

We divide the time horizon [0, T] into N subintervals, with time points {t0 = 0, t1, t2, . . . , tN =
T}, where ti = i∆t and ∆t = T

N
. To simulate the values of a Brownian motion at these

discrete times, we make use of the fact that Brownian motion has independent and Gaus-
sian increments. Specifically, we generate N independent standard normal random variables
Z1, . . . , ZN ∼ N (0, 1), and define the Brownian path recursively by:

Bt0 := 0,

Bti+1
:= Bti +

√
∆t Zi+1, for i = 1, . . . , N − 1.

This yields a discrete-time approximation of the Brownian motion over the interval
[0, T].

6

1 % Parameters
2 T = 1 ; % Time hor i zon
3 N = 1000 ; % Number o f time s t ep s
4 dt = T/N; % Time step s i z e
5 t = l i n s p a c e (0 , T, N+1) ;
6 B = ze ro s (1 , N+1) ; % Brownian motion
7 rng (1) ; % Set seed to ensure r ep roduc ib l e output
8 dB = sq r t (dt) ∗randn (1 , N) ; % Increments ~ N(0 , dt)
9

10 % Simulate BM
11 f o r i = 2 :N+1
12 B(i) = B(i −1) + dB(i −1) ;
13 end
14

15 % Plot
16 p lo t (t , B) ;
17 x l ab e l (’Time ’) ; y l ab e l (’B_t ’) ;
18 t i t l e (’ Brownian Motion ’) ;

Listing 1: Brownian Motion Simulation

Figure 1: A simulated path of the standard Brownian motion

4.2 Arithmetic SDEs

Recall that the solution of the arithmetic SDE (2) is given, for b ̸= 0, by

Xt = ebtX0 +
a

b

(
ebt − 1

)
+ σ

∫ t

0

eb(t−s) dBs.

When b = 0, the process reduces to an arithmetic Brownian motion, which can be simulated
in the same manner as a Brownian motion with drift. In this subsection, we simulate Xt for
the case b ̸= 0 using its explicit solution, where the stochastic integral is approximated by

7

a sum of Brownian increments. Below presents the code for simulating the solution of an
arithmetic SDE with initial condition X0 = 0.02, a = 0.04, b = −0.5, and σ = 0.1.

1 % Parameters
2 a = 0 . 0 4 ;
3 b = −0.5;
4 sigma = 0 . 1 ;
5 X0 = 0 . 0 2 ;
6

7 T = 1 ;
8 N = 1000 ;
9 dt = T/N;

10 t = l i n s p a c e (0 , T, N+1) ;
11

12 % Prea l l o c a t e
13 X = ze ro s (1 , N+1) ;
14 X(1) = X0 ;
15

16 % Brownian increments
17 dB = sq r t (dt) ∗ randn (1 , N) ;
18

19 % Exp l i c i t s o l u t i o n path
20 f o r i = 2 :N+1
21 % Stocha s t i c i n t e g r a l approximation :
22 stoch_int = sum(exp (b ∗ (t (i) − t (1 : i −1))) . ∗ dB(1 : i −1)) ;
23 X(i) = exp (b∗ t (i)) ∗ X0 + (a/b) ∗ (exp (b∗ t (i)) − 1) + sigma ∗ stoch_int ;
24 end
25

26 % Plot
27 p lo t (t , X) ;
28 x l ab e l (’Time ’) ;
29 y l ab e l (’X_t ’) ;
30 t i t l e (’ Ar ithmet ic SDE ’) ;

Listing 2: Arithmetic SDE Simulation with Explicit Solution

Alternatively, when the initial value X0 is deterministic, we can simulate the process
(Xt)t≥0 by exploiting its Gaussian distribution; see (4). In particular, for any 0 ≤ ti <
ti+1 ≤ T , conditioning on Xti , we have

Xti+1
= eb∆tXti +

a

b

(
eb∆t − 1

)
+ σ

∫ ti+1

ti

eb(ti+1−u) dBu.

In particular, we have

Xti+1
| Xti ∼ N

(
eb∆tXti +

a

b

(
eb∆t − 1

)
,

σ2

2b

(
e2b∆t − 1

))
.

Therefore, given Xti , we can simulate Xti+1
by drawing a standard normal random variable

8

Zi ∼ N (0, 1) and updating via

Xti+1
= eb∆tXti +

a

b

(
eb∆t − 1

)
+

√
σ2

2b
(e2b∆t − 1)Zi.

The following MATLAB code illustrates this simulation approach.
1 % Parameters
2 a = 0 . 0 4 ;
3 b = −0.5;
4 sigma = 0 . 1 ;
5 X0 = 0 . 0 2 ;
6

7 T = 1 ;
8 N = 1000 ;
9 dt = T / N;

10 t = l i n s p a c e (0 , T, N+1) ;
11

12 % Prea l l o c a t e
13 X = ze ro s (1 , N+1) ;
14 X(1) = X0 ;
15

16 % Simulate X_t i t e r a t i v e l y us ing c ond i t i o na l d i s t r i b u t i o n
17 f o r i = 2 :N+1
18 exp_bt = exp (b ∗ dt) ;
19

20 % Condi t iona l mean
21 mu_cond = exp_bt ∗ X(i −1) + (a / b) ∗ (exp_bt − 1) ;
22

23 % Condi t iona l var i ance o f s t o c h a s t i c i n t e g r a l
24 var_cond = (sigma^2 / (2 ∗ b)) ∗ (exp (2 ∗ b ∗ delta_t) − 1) ;
25

26 % Sample X(i) ~ Normal (mu_cond , var_cond)
27 X(i) = mu_cond + sq r t (var_cond) ∗ randn () ;
28 end
29

30 % Plot r e s u l t
31 p lo t (t , X;
32 x l ab e l (’Time ’) ;
33 y l ab e l (’X_t ’) ;
34 t i t l e (’ S imulat ion o f Arithmet ic SDE us ing c ond i t i o na l Gaussian increments ’) ;

Listing 3: Simulation of Arithmetic SDE using conditional Gaussian increments

4.3 Geometric Brownian Motions

A GBM is the solution of the SDE (5), which takes the explicit form

Xt = X0 exp

((
µ− σ2

2

)
t+ σBt

)
.

9

The most straightforward way to simulate a GBM is to first simulate a standard Brownian
motion Bt, followed by computing Xt using the above formula. Below presents the code
for simulating a GBM with initial condition X0 = 1, rate of return µ = 0.1 and volatility
σ = 0.2.

1 % Parameters
2 mu = 0 . 1 ;
3 sigma = 0 . 2 ;
4 X0 = 1 ;
5

6 T = 1 ;
7 N = 1000 ;
8 dt = T/N;
9 t = l i n s p a c e (0 , T, N+1) ;

10 B = ze ro s (1 , N+1) ;
11 X = ze ro s (1 , N+1) ;
12 X(1) = X0 ;
13 dB = sq r t (dt) ∗randn (1 , N) ;
14

15 % Simulate BM
16 f o r i = 2 :N+1
17 B(i) = B(i −1) + dB(i −1) ;
18 end
19

20 % Exp l i c i t s o l u t i o n
21 X = X0 ∗ exp ((mu − 0.5 ∗ sigma^2) ∗ t + sigma ∗ B) ;
22

23 % Plot
24 p lo t (t , X) ;
25 x l ab e l (’Time ’) ; y l ab e l (’X_t ’) ;
26 t i t l e (’ Geometric Brownian Motion ’) ;

Listing 4: Geometric SDE (Black-Scholes) Simulation

Alternatively, MATLAB has a built-in function gbm to directly simulate a geometric Brow-
nian motion.

1 % Parameters
2 mu = 0 . 1 ; % ra t e o f re turn
3 sigma = 0 . 2 ; % v o l a t i l i t y
4 X0 = 1 ; % i n i t i a l cond i t i on
5

6 T = 1 ; % Time hor i zon
7 N = 1000 ; % Number o f s t ep s
8 dt = T/N; % Time step
9 nPaths = 1 ; % Number o f s imulated paths

10

11 % Create GBM model
12 bm_model = gbm(0 , 1 , ’ S ta r tS ta t e ’ , X0) ;
13

14 % Simulate paths

10

15 [paths , time] = s imulate (bm_model , N, ’ DeltaTime ’ , dt , ’ nTr i a l s ’ , nPaths) ;
16

17 % Extract BM (GBM retu rn s l e v e l s ; here they are j u s t Brownian paths)
18 B = paths ;
19

20 % Plot
21 p lo t (time , B) ;
22 x l ab e l (’Time ’) ;
23 y l ab e l (’B_t ’) ;
24 t i t l e (’ Geometric Brownian Motion ’) ;

Listing 5: Simulating a standard Brownian motion using the gbm object

4.4 Euler-Maruyama Method

Given a generic SDE (1) with no closed-form solution, we can simulate the solution using
the Euler-Maruyama method. Given the initial condition X0 = ξ and the grid points
{0 = t0, t1, . . . , tN = T} with ti = i∆t and ∆t = T/N , we generate N independent standard
normal variables Z1, . . . , ZN ∼ N (0, 1), and define {Xti}Ni=0 recursively by:

Xt0 := ξ,

Xti+1
:= Xti + b(ti, Xti)∆t+ σ(ti, Xti)

√
∆tZi+1, for i = 0, . . . , N − 1.

The following code illustrates the simulation of the solution of the equation

dXt = (cos t+ 0.1Xt) dt+ 0.2(1 +Xt) dBt, X0 = 0.

1 % Euler−Maruyama method f o r SDE: dX = b(t ,X) dt + sigma (t ,X) dW
2 % Inputs :
3 b = @(t , x) cos (t) + 0 .1∗ x % func t i on handle f o r d r i f t , b (t , x)
4 sigma = @(t , x) 0.2∗(1+x) ; % func t i on handle f o r d i f f u s i o n , sigma (t , x)
5 X0 = 0 ; % i n i t i a l cond i t i on
6 T = 1 ; % f i n a l time
7 N = 1000 % number o f time s t ep s
8 M = 1; % number o f sample paths
9 dt = T / N; % step s i z e

10

11 t = l i n s p a c e (0 , T, N+1) ;
12 X = ze ro s (M, N+1) ;
13 X(: , 1) = X0 ;
14

15 f o r i = 1 :N
16 dB = sq r t (dt) ∗ randn (M, 1) ; % Brownian increments
17 X(: , i +1) = X(: , i) + b(t (i) , X(: , i)) ∗ dt + sigma (t (i) , X(: , i)) . ∗ dB ;
18 end
19

20 p lo t (t , X(1 , :)) % p lo t Path 1 o f the SDE

11

21 x l ab e l (’Time ’) ;
22 y l ab l e (’B_t ’) ;
23 t i t l e (’ Euler−Maruyama ’) ;

Alternatively, MATLAB offers a built-in function sde in the Financial Toolbox to simulate
the solution of a SDE given the coefficients b, σ.

1 % Simulat ion o f SDE us ing MATLAB’ s bu i l t −in sde func t i on
2 % Requires F inanc i a l Toolbox
3

4 % Dr i f t and d i f f u s i o n func t i on s
5 b = @(t , x) cos (t) + 0 .1∗ x ;
6 sigma = @(t , x) 0 . 2∗ (1 + x) ;
7

8 % SDE ob j e c t d e f i n i t i o n
9 SDEobj = sde (b , sigma , ’ S ta r tS ta t e ’ , 0) ;

10

11 % Simulat ion parameters
12 T = 1 ; % Fina l time
13 N = 1000 ; % Number o f time s t ep s
14 M = 1; % Number o f sample paths
15 dt = T / N; % Step s i z e
16

17 % Simulate paths
18 [Paths , Time] = s imulate (SDEobj , N, ’ DeltaTime ’ , dt , ’ nTr i a l s ’ , M) ;
19

20 % Plot the f i r s t path
21 p lo t (Time , Paths) ;
22 x l ab e l (’Time ’) ;
23 y l ab e l (’X_t ’) ;
24 t i t l e (’SDE Simulat ion us ing sde func t i on ’) ;

The Euler-Maruyama method is the default simulation method of the sde object. One
can also choose alternative simulation methods by specifying in the Method argument in
the function simulate; see https://www.mathworks.com/help/finance/sde.simulate.html for
details.

12

	Theory of Stochastic Differential Equations
	Arithmetic SDEs
	Geometric SDEs
	Simulations of SDEs
	Brownian Motions
	Arithmetic SDEs
	Geometric Brownian Motions
	Euler-Maruyama Method

